Package: twoStageDesignTMLE 1.0.1.2
twoStageDesignTMLE: Targeted Maximum Likelihood Estimation for Two-Stage Study Design
An inverse probability of censoring weighted (IPCW) targeted maximum likelihood estimator (TMLE) for evaluating a marginal point treatment effect from data where some variables were collected on only a subset of participants using a two-stage design (or marginal mean outcome for a single arm study). A TMLE for conditional parameters defined by a marginal structural model (MSM) is also available.
Authors:
twoStageDesignTMLE_1.0.1.2.tar.gz
twoStageDesignTMLE_1.0.1.2.zip(r-4.5)twoStageDesignTMLE_1.0.1.2.zip(r-4.4)twoStageDesignTMLE_1.0.1.2.zip(r-4.3)
twoStageDesignTMLE_1.0.1.2.tgz(r-4.5-any)twoStageDesignTMLE_1.0.1.2.tgz(r-4.4-any)twoStageDesignTMLE_1.0.1.2.tgz(r-4.3-any)
twoStageDesignTMLE_1.0.1.2.tar.gz(r-4.5-noble)twoStageDesignTMLE_1.0.1.2.tar.gz(r-4.4-noble)
twoStageDesignTMLE_1.0.1.2.tgz(r-4.4-emscripten)twoStageDesignTMLE_1.0.1.2.tgz(r-4.3-emscripten)
twoStageDesignTMLE.pdf |twoStageDesignTMLE.html✨
twoStageDesignTMLE/json (API)
NEWS
# Install 'twoStageDesignTMLE' in R: |
install.packages('twoStageDesignTMLE', repos = c('https://sg-tlr.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 1 months agofrom:8939221cf9. Checks:9 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 07 2025 |
R-4.5-win | OK | Mar 07 2025 |
R-4.5-mac | OK | Mar 07 2025 |
R-4.5-linux | OK | Mar 07 2025 |
R-4.4-win | OK | Mar 07 2025 |
R-4.4-mac | OK | Mar 07 2025 |
R-4.4-linux | OK | Mar 07 2025 |
R-4.3-win | OK | Mar 07 2025 |
R-4.3-mac | OK | Mar 07 2025 |
Exports:estimatePievalAugWsetVtwoStageDesignTMLENewstwoStageTMLEtwoStageTMLEmsm
Dependencies:bitopscaToolscodetoolscvAUCdata.tableforeachgamglmnetgplotsgtoolsiteratorsKernSmoothlatticeMatrixnnlsRcppRcppEigenROCRshapeSuperLearnersurvivaltmle
Readme and manuals
Help Manual
Help page | Topics |
---|---|
estimatePi | estimatePi |
.evalAugW calls TMLE to use super learner to evalute preliminary predictions for Q(0,W) and Q(1,W) conditioning on stage 1 covariates | evalAugW |
print.summary.twoStageTMLE | print.summary.twoStageTMLE |
print.twoStageTMLE | print.twoStageTMLE |
Utilities setV Set the number of cross-validation folds as a function of effective sample size See Phillips 2023 doi.org/10.1093/ije/dyad023 | setV |
summary.twoStageTMLE | summary.twoStage |
summary.twoStageTMLE | summary.twoStageTMLE |
twoStageDesignTMLENews Get news about recent updates and bug fixes | twoStageDesignTMLENews |
twoStageTMLE | twoStageTMLE |
twoStageTMLEmsm | twoStageTMLEmsm |